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A model based on neural networks has been designed to detect lampante virgin olive oils, a category
of olive oil that cannot be consumed without a previous refining process according to the current
regulation of the European Communities. The response of 7 metal oxide sensors analyzing 114 olive
oil samples has been used in the design, training, and internal validation of the neural network with
only 4.5% error in validation. The designed mathematical model, the equations of which are fully
described, has been validated also with an external set of 13 samples of diverse varieties and
geographical origins with 100% correct classification.
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INTRODUCTION

The market price of virgin olive oils (VOOs) is determined
by their sensory quality. The current European Union (EU)
regulation (1) classifies VOO into three categories: extra virgin,
virgin, and lampante. The last category also includes the old
category, so-called “ordinary” (2). From these three categories,
it is important to distinguish lampante virgin olive oils be-
cause they cannot be consumed without refining, whereas the
“ordinary” classification can sometimes indicate a risk of
consumers’ rejection. The current methods based on sensory
and chemical evaluations of VOO quality are lengthy, expensive,
and sometimes affected by the subjectivity of assessors’ or
analysts’ errors. Thus, the risk of wrong classifications increases
even more when one is working with panel tests from different
nationalities (3), whereas the relationship between chemical
compounds and sensory attributes is the main drawback of
chemical analyses (4, 5) when olive oils are classified into their
categories. Besides, none of these methods can be applied on-
line.

The alternative is the use of sensors for the measurement of
the foodstuff’s entire aroma (6, 7). Sensors do not need any
pretreatment and do not use solvents to detect the presence of
volatiles; besides their main advantages are their low cost and
the rapid evaluation of the aroma. Metal oxide semiconductor
sensors (MOS) have been used in the quality classification of
edible oils (8, 9). Thus, sensors would be useful in distinguishing
the highest quality VOOs from the lowest ones if they were
able to cluster together all low-quality VOOs whichever the
off-flavor, or combination of off-flavors, presented in the oil.
However, most of the MOS show a nonlinear response to a
given chemical compound or odor. Therefore, this property
makes the nonlinear mathematical procedures attractive for MOS

analyses. Thus, artificial neural network (ANN), a statistical
method appropriate for handling highly complex and nonlinear
data, has allowed satisfactory results to be obtained when applied
to sensor responses (6). Among the different types of ANNs,
the multilayer perceptron (MLP) is nowadays considered to be
one of the most common in regression and classification tasks
(10). This paper analyzes the possibilities of MOS and MLP
after working with the samples of a data set and verification of
the results with an external validation set.

MATERIALS AND METHODS

Materials. A Spanish VOO var. Farga spiked with 60 mg/kg acetic
acid was the standard used in the repeatability studies. This standard
was still frozen and did not alter during the whole time of the
experiments. Blends of refined olive oil and VOO var. Hojiblanca at
various percentages (5, 10, 25, 50, and 75%) were used to determine
the limits of detection (LOD).

One hundred and fourteen samples of VOO (var. Hojiblanca) were
used for designing and training the MLP procedure. This set of 114
samples was split into three subsets: 68 samples (training set), 22
samples (test set), and 24 samples (validation set). The samples were
supplied by an association of cooperatives (Hojiblanca SCA, Málaga,
Spain) that represents 4% of total Spanish olive oil production. Fifty-
six of these samples (49%) were qualified as lampante by the assessors
of the cited association. On the other hand, another set (external
validation) of 13 samples (var. Arbequina, Cornicabra, and Picual) was
used to check the mathematical model. These samples were supplied
by Aceites del Sur SA (Sevilla, Spain), four samples being classified
as lampante by trained assessors. All of the samples were collected in
different geographical regions and analyzed for 11 months to check
the effect of drift in the sensor baseline.

Equipment. A Fox 4000 with ACU 500 humidifier supplied by
AlphaMOS SA (Toulouse, France) was used. This instrument is
equipped with 18 metal oxide sensors, inside three chambers, 6 of them
being undoped metal oxide sensors and 12 being metal oxide sensors
doped with noble catalytic metals in order to shift the selectivity
spectrum toward different chemical compounds. The temporary and
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reversible adsorption of volatile-reducing compounds at the sensor
surface changes its electrical resistance in a nonlinear manner (11).
The response is characteristic of each sensor and depends on the
concentration and the profile of the volatile compounds.

The air conditioning unit (ACU 500) consists of a thermostat tank
containing distilled water where the carrier gas bubbles continually.
When a valve is opened during the injection time, a controlled mixture
of dry and humid industrial airs sweeps the headspace of the sampling
chamber, the temperature of which is controlled automatically.

Industrial air, from an air compressor, was used as carrier gas after
being filtered through two columns. The first column was filled with
molecular sieve 8/12 mesh (Supelco, Bellefonte, PA) to remove the
moisture, whereas the second column was filled with activated carbon
(Supelco) to remove hydrocarbons and other undesirable volatile
compounds.

The analytical parameters (sample amount, headspace generation
time, sample temperature, flow rate, and injection time) were determined
after an optimization process based on the evaluation of three
desirability functions by fuzzy algorithms (8).

Samples were analyzed in duplicate. Standards for calibration of
the sensor array were measured at programmed times to check that the
aging of the sensors did not affect the measurement.

Measurements of Repeatability and Limit of Detection.Repeat-
ability studies, either within-day or within-week or between-days, were

investigated by consecutively collecting the sensor results of the same
sample of VOO (var. Farga spiked with 60 ppm of acetic acid) (8).
The within-week repeatability was determined by analyzing the sample
for 5 consecutive days. Finally, the between-days repeatability study
was carried out for 6 months. The relative standard deviation (% RSD)
was the parameter used to analyze the repeatability.

The LOD of the sensors were calculated by using a calibration line
of refined oil samples spiked with VOO at six different percent-
ages. Three replicates of each level were analyzed (12). Once a linear
regression analysis was carried out for each sensor, the LOD calculation
was based on the standard deviation of the regression line and the
slope (13).

Data Processing.The response of the sensors presents an exponential-
like shape, but not all of this information is useful. After different
methods of data preprocessing had been tested, raw data (non-pre-
processing data) were selected because they showed the best differential
properties (9). Windowed time slicing (WTS) (14) was used to reduce
the information to a reasonable data set. The number of windowing
functions was 4, each one applied to a different region of the sensor
response (8).

A standard was analyzed before and after each series of analyses
with the objective of minimizing the effect of sensor aging and
environmental conditions. The information was used to standardize
WTS data.

The detection of multivariate outliers was carried out by applying
principal component analysis (PCA). Mahalanobis distance, evaluated
asø2, was used to discover outliers among samples and with respect to
the solution, whereas outliers among variables (WTS) were detected
by the squared multiple correlation (15).

A genetic algorithm was applied to select the optimal set of variables
(WTS) for the neural network. An ANN was used because of its ability
to handle nonlinear data and to compensate for the drift of the sensor
array (6). MLP, which is perhaps the most popular network architecture,
was used to study the differences between lampante and nonlampante
VOO. A conjugate gradient descent algorithm (16) was used to
minimize the prediction error made by the ANN. The training algorithm
used the sum-squared error function to train the network and to report
the root-mean-square (RMS) error. The weights and threshold were
calculated by applying this algorithm to the training set. The best
network was selected by means of the samples of the test set. This set
is also used to stop the training procedure in case of overlearning. ANN
performance was determined by the validation set.

Statistica (17) was used to perform the data processing and to
implement neural network analyses.

RESULTS AND DISCUSSION

Study of Repeatability and Limit of Detection. Because
the main limitations of sensor systems are related to drift and

Table 1. Mean Values of RSD (Percent) and LODa

% RSD

sensor A B C LOD

S1 1.86 2.07 9.28 2.23
S2 2.96 1.14 19.91 9.03
S3 2.20 1.53 15.72 22.15
S4 2.44 1.15 10.42 16.10
S5 2.49 1.74 14.85 8.57
S6 1.15 2.33 3.10 1.70
S7 9.14 13.74 14.07 15.71
S8 9.20 16.08 16.73 6.82
S9 6.15 11.33 8.38 5.58
S10 7.75 12.72 12.82 9.85
S11 8.75 13.05 13.41 19.13
S12 11.92 20.98 27.46 11.81
S13 10.89 19.78 18.49 74.82
S14 10.02 10.93 17.48 11.83
S15 3.90 4.80 12.59 0.22
S16 9.93 12.16 10.20 16.06
S17 0.94 1.92 1.96 2.62
S18 0.91 1.88 2.23 2.65

a Repeatability study for within-day (A), within-week (B), and 6 months (C).

Figure 1. Values of the fourth windowed time slicing (WTS) of various sensors for 6 months.
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low repeatability (6), it is important to understand whether any
signal variation is due to sample change or an inherent signal
drift. On the other hand, an estimation of the detection limits is
required to know the minimum amount of volatile compounds
of a VOO sample that can be detected by each sensor.

Table 1 shows the % RSD (mean of the four WTS) of all
the sensors for the within-day, within-week, and between-day
repeatability studies. The WTS values of the sensors with values
>10% were not used in the following studies. It is important
to remark that within-day and within-week results displayed
in Table 1 are the worst of all the studies carried out for 6
months.Figure 1 shows the response of some sensors for 6
months to study their aging. The signals of some sensors
(sensors 1, 5, and 6) show no change during this period. The
response of sensor 13, however, increased over time, which
means that a significant part of the information is caused by a
change of the sensor sensitivity. Thus, the use of reference
standards seems to be very important when any analysis with
sensors showing this behavior is carried out (18). We selected
a VOO spiked with acetic acid because the best material for
monitoring performance and providing data for calibration
should be similar to the product that is being tested (18) and

acetic acid qualifies the undesirable sensory attribute of
“winey/vinegary” (8).

Table 1 also shows the values of LOD of all the sensors. An
LOD of e10% was considered to be appropriate for providing
satisfactory results. Thus, sensors 1, 5, 6, 8, 9, 17, and 18 showed
the best behaviors according to the repeatability and LOD
values.

Classification of Virgin Olive Oils. The profile of volatile
compounds is responsible for the aroma of low-quality VOOs
(lampante) and, hence, for the off-flavors. The hypothesis that
the sensor response depends on the amount and composition of
volatile compounds has already been demonstrated by the
authors, who analyzed some negative attributes (fusty, rancid,
and vinegary) by canonical correlation (8). On the basis of these
promising results, a study with the following sequence was
planned: detection of multivariate outliers by means of PCA,
design and training of MLP procedure, implementation of a
neural network with a discriminant model, and a second
validation of the model by an external set of samples.

The raw information was first clustered into four WTS and
then standardized to avoid hypothetical sensor aging. The
collected information was checked for the detection of outliers.

The study of outliers is extremely necessary as they can
greatly affect the magnitudes of the decision equation coef-
ficients. This study was carried out by multivariate proce-
dures, as the problems come mostly from multivariate outliers
among variables and cases. Thus, five multivariate outliers
among cases (two nonlampante and three lampante VOOs) and
three multivariate outliers among variables (sensors 2, 12, and
13) were detected by PCA and removed prior to the following
studies.

Once the outliers were removed, a genetic algorithm was
applied to the WTS of the selected sensors in order to choose
the optimal variables for designing the network. The procedure
selected 11 inputs from an initial set of 28 variables. Several
ANNs were designed with these inputs, using the set of samples
var. Hojiblanca (training set). After several network architectures
had been trained and validated, an MLP 11:11-6-1:1 (Figure
2) was selected with a classification rate of 95%. This MLP
was obtained after a training process with the conjugate gradient
descent algorithm (58 epochs) until obtaining the minimum
RMS error (Figure 3). The RMS errors of the three subsets, in
which the data set was divided, were 0.16 (training set), 0.19

Figure 2. Structure of the multilayer perceptron (MLP) used to distinguish
between lampante and nonlampante VOO.

Figure 3. Evolution of root-mean-square (RMS) error during training by the conjugated gradient descent algorithm.
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(test set), and 0.27 (validation set). The designed MLP of three
layers is defined by the equation

wherey is the output variable,xi is the input variable,wij and
wj are the weights for the connections from the input layer to
the hidden one and from the hidden layer to the output,
respectively, andai andaj are constants that operate as “bias”
values in the network. The values for these parameters are shown
in Table 2. The output values for each node use the sigmoid
activation function (f):

The set of sensors selected for MLP (xi in eq 1) shows that
the most relevant information concerns to the processes of
adsorption (WTS1) and desorption (WTS4 and WTS3) of
volatiles and the steady state (WTS2). The second kind of
information is related with sensor characteristic because sensors
1, 5, and 6 are undoped, whereas sensors 8, 9, 17, and 18 are
doped (6). Finally, no discrimination was detected in terms of
the order of sensors evaluating the samples because four belong
to the first chamber (sensors 1, 5, and 6) and the others are

placed inside the second (sensors 8 and 9) and third (sensors
17 and 18) chambers.

After design of the network, the MLP was applied to the
whole data set with the idea of testing the model in a larger
number of samples. The neural model was able to classify
correctly 96.4% of the nonlampante and 94.3% of the lampante

Figure 4. Results of applying the multilayer perceptron (MLP) to the samples of the data set.

Figure 5. Results of applying the multilayer perceptron (MLP) to the samples of the external validation set.

y ) f[∑
j

wj f(∑
i

wij xi + ai) + aj] (1)

f(x) ) 1/(1 + e-x) (2)

Table 2. Values of the Parameters in the Neural Network Equationa

hidden layer output layer

wi1 wi2 wi3 wi4 wi5 wi6 output unit

ai −4.85 −0.63 1.41 5.48 −0.13 2.03 aj 0.01
x1 2.45 2.68 −2.25 −12.12 0.62 −0.75 w1 8.66
x2 −0.21 1.19 −0.82 4.36 1.91 0.44 w2 0.08
x3 −4.81 1.99 −3.08 16.09 1.41 0.59 w3 −1.27
x4 2.05 −0.84 1.17 4.48 0.34 −2.59 w4 −20.11
x5 3.91 −1.15 1.09 −3.77 −0.26 −1.86 w5 −1.52
x6 1.95 0.32 −0.70 −2.90 −1.84 −1.08 w6 0.23
x7 0.84 0.06 −2.01 3.20 −0.04 −1.53
x8 1.26 1.45 −2.25 1.06 −0.31 −1.41
x9 0.72 1.02 −0.52 −1.46 0.53 −0.89
x10 −1.42 1.29 −1.57 −1.49 0.03 −0.32
x11 1.44 1.19 0.46 0.76 −0.29 −1.68

a xi is the input variable; wij and wj are the weights for the connections between
layers; and ai and aj are the bias values.
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VOOs for a threshold value of-0.58. Furthermore, the RMS
error was slightly higher in the lampante VOOs (0.22) than in
the nonlampante (0.16). The diversity of possible off-flavors
(rancid, winey-vinegary, fusty, muddy sediment, cucumber, etc.)
explains why sensors have difficulty in clustering together all
of them. This problem does not appear in the case of nonlam-
pante VOOs, which lack off-flavors, and hence the neural
network interprets this absence of off-flavors in an olive oil as
being a nonlampante VOO.

Figure 4 shows the output values of the MLP against the
number of samples. TheY-axis indicates the quality level of
the samples in relation to the sensory assessment, because this
axis shows the values obtained after application of the neural
network equation to each sample of the data set. Values of the
network equation close to 0 correspond to nonlampante VOOs,
whereas values close to-1 indicate that the analyzed samples
are lampante VOOs. The threshold centered at-0.58 was
established in such a way that the errors of a wrong classification
were minimized (17). The threshold was then used as a limit
between lampante and nonlampante VOOs. The samples clas-
sified next to this threshold indicate that their quality would
correspond to the former “ordinary” VOOs, a category that is
between the nonlampante and lampante categories, according
to a previous EU regulation (2). In this zone is where the risk
of a wrong classification is quite high due to the absence of
discontinuity in the sensory evaluation by assessors, and hence
it can be considered as a transition zone between the two main
groups (lampante versus nonlampante VOOs). When this
threshold was applied, only five samples (two nonlampante and
three lampante VOOs) were classified incorrectly. Two of these
lampante samples erroneously classified as nonlampante VOO
had been previously declared to be “ordinary” VOO according
to the cited former regulation for the sensory assessment (2).
The other, evaluated with a median of defects (Md) of 6.4, was
evaluated again by assessors of an official panel (Instituto de
la Grasa), and it was classified with Md) 5.8, what indicates
that the sample would be within the former “ordinary” category
(2). This fact demonstrated the difficulty in obtaining a full
consensus among different panel tests when they evaluate VOOs
(3). The two nonlampante VOOs that were misclassified were
also evaluated by the panel test previously mentioned, and a
slightly winey flavor was found in one of them. However, no
deficiency was found in the other sample.

After the designing of the ANN using a set of samples of the
same variety, the next aim was the validation of the neural
network equation with an external validation set to check the
generalization ability. The equation was applied to a set of
samples of different single varieties (Arbequina, Cornicabra,
and Picual) and diverse geographical origins. The aim was to
check if the variety and/or the sensory evaluation, in this case
carried out by the panel test of the factory Aceites del Sur SA,
affected the model based on neural networks. As a result, all of
the samples (100%) were correctly classified (Figure 5), which
indicates the validity of the proposed model.

In conclusion, the model based on neural networks has been
able to distinguish lampante virgin olive oils from the other
categories with only 4.5% error in the data set and without error

in an external validation set. However, the error is even less if
we take into account that only one sample could not be explained
by a second sensory evaluation carried out with an official panel
test. Thus, the designed model avoids the subjective opinions
of assessors, classifies a sample in only a few seconds, and has
a minimum cost of analysis.
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